
CITR TECHNICAL JOURNAL VOLUME 1 93

ON DEDUCTIVE DATABASES WITH INCOMPLETE INFORMATION

QINZHENG KONG AND GRAHAM CHEN

Abstract—In order to extend the ability to handle incomplete information in a definite deductive database,
a Horn clause based system representing incomplete information as incomplete constants is proposed. By
using the notion of incomplete constants the deductive database system handles incomplete information in
the form of sets of possible values, thereby giving more information than null values. The resulting system
extends Horn logic to express a restricted form of indefiniteness. Although a deductive database with this
kind of incomplete information is, in fact, a subset of an indefinite deductive database system, it represents
indefiniteness in terms of value incompleteness and therefore it can make use of the existing Horn logic
computation rules. The inference rules for such a system are presented, its model theory discussed and an
indefinite model theory proposed. The indefinite model theory is consistent with minimal model theory
and extends its expressive power.

Categories and Subject Descriptors—H.1.1 [Models and Principles]: Systems and Information Theory—
information theory; H.2.4 [Database Management]: Systems—query processing; I.2.3 [Artificial
Intelligence]: Deduction and Theorem Proving—logic programming

General Terms—Design, Management, Theory

Additional Keywords and Phrases—Deductive databases, incomplete information, Horn clause, query
evaluation, Prolog

Source of Publication—ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995, pp 354-369.

1 INTRODUCTION

Different information systems model the real world information and knowledge using different abstract
frameworks. A deductive database is one of such information system that models the information by using a
subset of the first order logic and provides the storage, manipulation and retrieval of the information by using
the deductive capabilities offered by the first order logic system. However, most real world information and
knowledge are not presented as the precise values, rather they are often presented as the missing, incomplete,
uncertain values. Whereas such incomplete information existed in all types of information systems and has
been studied extensively [3,5,9,10,16,18,24], this paper concentrates on the problems existing in deductive
database systems.

A deductive database is a database containing both explicit and implicit facts. It provides the facilities to
define implicit data in terms of general rules and the deductive ability to reason with the database
[1,2,11,19,20]. First order logic can be used as the theoretical foundation for deductive databases [12,13].

Usually, a deductive database takes one of the following two formats as the general format of its rules. One
is the full clausal form which is equivalent to first order predicate calculus, the other is a restricted form,
known as the Horn clause. In a Horn clause system each clause is a definite clause which contains only one
positive literal. A database which consists entirely of definite clauses is referred to as a definite deductive
database, while a database containing non-Horn clauses is referred to as an indefinite deductive database.

The general non-Horn system is much more powerful than the definite deductive system. However, one of
the difficulties that the deductive database community has encountered is the efficient implementation of
systems which employ the full first order logic format. It seems that this difficulty cannot be overcome
without applying restrictions to the language ability. This is due to the nature of the complexity problem of
first order logic theorem proving in general. Hence one crucial decision to be taken in designing a deductive
database system is the choice of format in which the clauses are to be stored. On the one hand full clausal
form is a powerful representation but, as agreed by many researchers, the general case of non-Horn clause is
undesirable since it adds substantially to the complexity of deductive operations in a database [5,20,23]. On
the other hand, the Horn clause representation is more desirable since the satisfiability in a Horn clause system
is decidable and query evaluation process can be constructed efficiently. However, a simple Horn clause
system has no power to handle indefinite information which commonly occurs in a database system.

This leads to the question of whether there is any alternative form between full clausal form and Horn
clausal form which can be accepted as the basic format for general rules in a deductive system. Alternatively,

94 QINZHENG KONG AND GRAHAM CHEN

is there some other way to represent a degree of basic indefinite information in a deductive database while
adding only a little to the overall system complexity?

One approach would be to adopt the way of handling incomplete information in relational databases.
Lipski proposed a mathematical model of an incomplete information system [9,10]. If the concept of
incomplete information in relational databases can be introduced into a deductive database, the problem of a
special indefiniteness can be confined to the problem of value incompleteness. In other words, instead of
introducing the general form of disjunction into a deductive database to handle the indefinite problem, a new
data type, called an incomplete constant, can be introduced into a Horn clause system to handle a degree of
indefiniteness. For example, the piece of information that Tom’s age is either 20 or 21 although it is not known
which can be represented as a disjunction:

age(tom, 20) ∨ age(tom, 21)
This can also be viewed as saying that the value of Tom’s age is either 20 or 21. By using a set notation, the

value “either 20 or 21” can be represented as an incomplete constant of the form {20, 21}. The above
disjunctive clause can be represented as a Horn clause with an incomplete constant as:

age(tom, { 20, 21})
Such an incomplete constant can occur in both positive and negative literals just as a complete constant

can. A clause containing an incomplete constant can be used to represent disjunctive information in terms of
data, that is, each disjunction in a disjunctive clause has the same predicate name and arity. The restriction
imposed on the format of the clause is necessary since it is expected that this will reduce the computational
complexity inherent in the satisfiability problem of first order logic.

2 THE INTERPRETATION OF INCOMPLETE INFORMATION

The introduction of incomplete information into deductive databases leads to many new problems which
may not arise in the case of the relational model. The first is the problem of interpretation. Suppose a ground
clause containing incomplete constant has the form:

 p({ a,b})
which stands for either p(a) or p(b) or both hold in the database. It can be expressed as:

 ∃U ∈ { a,b} p(U)
which is equivalent to

 p(a) ∨ p(b)
However, in defining deductive rules, the concept of variables is used. A basic problem occurs with a

clause containing both variables and incomplete constants. For example, a clause of the form p(X, {a,b}) ←
q(X) may have two possible interpretations. One is to put the universal quantifier in front of the existential
quantifier, that is, the clause is interpreted as:

 ∀X∃A ∈ { a,b} p(X,A) ← q(X)
which is equivalent to

 p(X,a) ∨ p(X,b) ← q(X)
The other is to put the quantifiers in the reverse order, so that the clause is interpreted as:

 ∃A ∈ { a,b} ∀X p(X,A) ← q(X)
which is equivalent to

 (∀X p(X, a) ← q(X)) ∨ (∀X p(X, b) ← q(X)) ⇔ (p(X, a) ← q(X)) ∨ (p(Y, b) ← q(Y))
here, the concept of variable re-name is introduced to keep the clause under the full clausal form. When the
number of incomplete constants and the number of variables in a clause increases, the number of different
interpretations increases dramatically. These differences are caused by the different orders of the quantifiers.

Since it is not the intention to handle full first order logic which would be too expensive, but instead to
investigate a practical way to handle some type of incompleteness in the Horn clause framework, two special
cases of incomplete information are particularly interesting. One arises from the assumption that if a clause
contains both incomplete data and variables it has the interpretation that all universal quantifiers precede the
existential quantifiers. For example, a clause with the form

 p(X, { a,b} , Y, { c,d}) ← q(X, Y)
is interpreted as:

ON DEDUCTIVE DATABASES WITH INCOMPLETE INFORMATION 95

 ∀X ∀Y ∃A ∈ { a,b} ∃B ∈ { c,d} p(X,A,Y,B) ← q(X,Y)
This is referred to as AE notation.

The other arises from the assumption that for any number of incomplete constants and variables occurring
in a clause, all existential quantifiers precede universal quantifiers. For example, a clause which has the form

 p(X,{ a,b} ,Y,{ c,d}) ← q(X,Y)
is interpreted as:

 ∃A ∈ { a,b} ∃B ∈ { c,d} ∀X ∀Y p(X,A,Y,B) ← q(X,Y)
This is referred to as EA notation.

By comparing these two notations [6,8], it is realised that both the AE notion and the EA notion of
incomplete information introduce some indefinite features into a definite database though neither can cover
the whole task of handling incomplete information. The differences between these two notions are:

1. A clause under the AE notation can be directly rewritten as a simple disjunction, while under the EA
notation the concept of variable re-naming is introduced to keep the system under the scope of clausal
form. This may increase the complexity and cost of the system.

2. The AE interpretation provides a simple way for the database user to represent incomplete values, while
the EA interpretation provides a way to express a property, which is not known exactly, for a system.

The following examples illustrate the differences of the two interpretations.
Example 1: Consider a clause:

 blood_type(Child, { a,o}) ← father_blood_type(Child, a) ∧ mother_blood_type(Child, o)
that specifies that if the father has blood type A and the mother has blood type O then the blood type of the
child might be either A or O. This rule has the AE interpretation, i.e.:

 ∀Child∃B ∈ { a, o} blood_type(Child, B) ← father_blood_type(Child, a) ∧ mother_blood_type(Child, o)
Example 2: Consider a clause:

 teaches({ tom, peter} , Student) ← register(Student, c101)
that specifies that either Tom or Peter teaches all students registered with the class c101. This rule has the EA
interpretation, i.e.:

 ∃Teacher ∈ { tom, peter}∀Student teaches(Teacher, Student) ← register(Student, c101)
In most database applications, the requirement of the user for incompleteness is mainly at the attribute

value level rather than at the system level. That is, users are mainly interested in how to represent a value of a
particular attribute when the exact value is not known, rather than in how to represent a number of alternative
system properties, and the AE notation provides a simple way to represent an incomplete attribute value, it is
the better choice for the type of the incomplete information to be handled.

In the following sections, when incomplete information is referred to it is assumed to conform to the AE
interpretation, that is, a clause with the form

 p(X, { a,b}) ← q(X, { c,d})
has the interpretation

 ∀X∃A ∈ { a,b} p(X,A) ← ∃B ∈ { c,d} q(X,B)
which is equivalent to

 p(X,a) ∨ p(X,b) ← q(X,c) ∨ q(X,d)

3 INFERENCE MECHANISM

As pointed out by Lipski [9,10], a query applied to a database containing incomplete information might
have many different interpretations depending on the certainty associated with it. But there are two bounds on
the external interpretation of a query in an incomplete database system, namely the lower bound and the upper
bound of the query.

Lipski’s notion of the boundary can be extended to queries based on clauses in a deductive database
containing incomplete information. If the lower bound of a query is required then all answers which can be
concluded from the database are included. Such a query is referred to as a definite query and the prefix def is
used to denote such a query. If the upper bound of a query is required, then all those potential answers with the
possibilities that they might be true are included as part of the answer set. Such a query is referred to as a
possible query and the prefix pos is used to denote a possible query.

96 QINZHENG KONG AND GRAHAM CHEN

3.1 THE PROOF THEORY OF INCOMPLETE DEDUCTIVE DATABASE

The satisfiability of a Horn system is decidable and there exist reasonably effective systems such as Prolog
to construct a query evaluation system. Since incomplete information introduces indefiniteness into definite
databases, the effective method of query evaluation for definite databases cannot be applied to indefinite
databases directly. However, as shown by Loveland [14], a non-Horn system can be split into a set of Horn
clause systems. The question of the satisfiability of the non-Horn system can be transformed into that of the
satisfiability of the corresponding set of Horn clause systems.

A clause can be proved to be true in such a non-Horn system if and only if it can be proved to be true in
each of the corresponding Horn subsystems. The proof of a clause in a Horn subsystem can be tested by using
the proof by refutation procedure.

Although the idea of splitting a system into subsystems and checking the satisfiability in each is not
efficient, it can still be adopted as the theoretical foundation on which the inference rules of the database
containing incomplete information can be derived.

In general, a clause in the database which contains incomplete information has the following format:
 p() ∨ ¬ q1 (1) ∨ ... ∨ ¬ qm (m)

which can also be written in implication form as:
 p() ← q1 (1) ∧ ... ∧ qm (m)

in which each argument of p and qi (1 ≤ i ≤ m) can be a variable, a complete constant or an incomplete
constant having the form {a1, ..., an}. Indefiniteness due to incomplete information is introduced by allowing
occurrences of incomplete constants as arguments of the positive literal p. According to the AE interpretation,
a positive literal in a clause containing incomplete information can be transformed into a disjunction of literals
without incomplete information in the same clause. The transformed clause can be split into a set of Horn
clauses. Thus the evaluation of a query in an incomplete database can be transformed into the evaluations of
the same query in a set of complete sub-databases.

Since a deductive rule containing variables can be represented as a set of rules by instantiating each
variable with each value of the Herbrand universe of the system, and since the database concerned is function
free, the closure of its ground instance clause set is finite. For a given database, an equivalent ground database
can be constructed. Hence, in what follows the system is assumed to have only ground clauses. The splitting
algorithm can be given as follows:

1. If a positive literal in a ground clause C contains an incomplete constant α with n possible values, then
C is split into n sub-clauses where each sub-clause is a duplicate of C except the argument α is replaced
by a distinct value of set α. This procedure can be repeated until there are no incomplete constants in
any positive literal.

2. A system DB containing an incomplete clause C (the positive literal in the clause containing incomplete
constants) can be split into a set of subsystems. Each subsystem contains only one sub-clause of C and
the rest of the database. This procedure can be repeated until there is no incomplete clause in any
subsystem.

3. Each subsystem is then a definite system, that is, a Horn clause system.

A general query evaluation strategy can be given as follows: Let S(DB,Q,θ0,θ) denote a status which
specifies that a query Q is to be evaluated in the database DB with θ0 as the initial substitution and θ as the
result substitution. A substitution is a set having the form

θ = { t1/v1, t2/v2, ..., tm/vm}
in which each ti is a term, each vi a variable and vi ≠ vj if i ≠ j. The initial substitution for the original query is
always the empty set.

If the query is an empty clause (denoted as) then the whole evaluation terminates, and the result
substitution θ is the final substitution which constitutes an answer to the query.

The inference rules for a complete database are specified as follows:
Rule 1: If the query is an empty clause then the evaluation terminates and the result substitution

represents the answer to the original query.
S(DB, ,θ,θ) final substitution = θ

A B B

A B B

ON DEDUCTIVE DATABASES WITH INCOMPLETE INFORMATION 97

Rule 2: If the query Q is a conjunction of literals Q1 ∧ Q2 then, if the evaluation of Q1 succeeds yielding
result substitution θ1, and if the evaluation of Q2 with substitution θ1 succeeds, then the evaluation of the
query Q succeeds. The result substitution of Q2 is the final substitution.

S(DB,Q1 ∧ Q2, θ0, θ) ⇔ S(DB,Q1, θ0, θ1) and S(DB, Q2, θ1, θ) final substitution = θ
Rule 3: If the query Q is a disjunction of literals Q1 ∨ Q2 then, if the evaluation of either Q1 or Q2 with the

initial substitution θ0 succeeds then the evaluation of the query Q succeeds and its result substitution is the
final substitution of query Q.

S(DB,Q1 ∨ Q2, θ0, θ) ⇔ S(DB,Q1, θ0, θ) or S(DB,Q2, θ0, θ) final substitution = θ
Rule 4: If the query is a single literal Q then, if either of the following two conditions is satisfied:
• there exists a ground fact p such that the query with the initial substitution Qθ0 can unify with p

yielding a result substitution θ;
• there exists a deductive rule having the form p → R such that the query with the initial substitution Qθ0

can unify with the conclusion p yielding a substitution θ1 as a result and the evaluation of the condition
R with θ1 as the initial substitution succeeds yielding θ as the result substitution

then the evaluation of Q succeeds and θ is the final substitution.
S(DB,Q,θ0, θ) ⇔ p ∈ DB ∧ (p = (Q θ0) θ) or p ← R ∈ DB ∧ (p θ1 = (Q θ0) θ1) and S(DB,R, θ1, θ)

final substitution = θ
In an incomplete database rules 1, 2 and 3 can be used directly. A query containing incomplete information

can be transformed into a disjunctive query without incomplete information, then rule 3 is applied to evaluate
the query. If incomplete information is involved in some database clauses then the following two rules must be
added to complement this rule.

Rule 5: If the database has the form DB & (p1 ∨ p2) in which p1 ∨ p2 is a disjunctive clause then the
evaluation of a definite query Q is transformed into a set of evaluations in DB & p1 and DB & p2. If both the
evaluations succeed then the whole evaluation succeeds.

 S(DB & (p1∨ p2),Q, θ0, θ) ⇔ S(DB & p1,Q,θ0,θ1) and S(DB & p2,Q,θ0,θ2)
final substitution θ = θ1+θ2

The combination of the result substitution in each subsystem (denoted as θ1 + θ2) constitutes the final
substitution for the query. The combination function can be specified as:

∃i t/vi ∈ θ1 ∧ s/vi ∈ θ2 ∧ t ≠ s → { t,s} /vi ∈ θ
∃i t/vi ∈ θ1 ∧ t/vi ∈ θ2 → t/vi ∈ θ
∃i t/vi ∈ θ1 ∧ s/vi ∉ θ2 → t/vi ∈ θ
∃i t/vi ∈ θ2 ∧ s/vi ∉ θ1 → t/vi ∈ θ

in which {t, s} represents an incomplete constant.
Rule 6: If the database has the form DB & (p1 ∨ p2) in which p1∨ p2 is a disjunctive clause then the

evaluation of a possible query Q is transformed into a set of evaluations in DB & p1 and DB & p2. If any
evaluation in the subsystems succeeds then the whole evaluation succeeds. The result substitution of the
successful evaluation constitutes the final substitution of the query.

S(DB & (p1 ∨ p2), Q, θ0, θ) ⇔ S(DB & p1, Q, θ0, θ) or S(DB & p2, Q, θ0, θ) final substitution = θ
The rules 1, 2, 3, 4 and 5 form the definite query evaluation system which follows the normal process of

logical deduction. Such a deduction is referred to as a definite deduction. Rules 1, 2, 3, 4 and 6 form the
possible query evaluation system. Such a deduction is referred to as a possible deduction.

3.2 ANSWER DEFINITION

When a query Q is applied to a complete database DB, each answer is a substitution θ such that
DB = Qθ

in which = is a deduction which follows the inference rules given in the previous section. If either the query
or the database contains incomplete information then the answer may be a combination of alternative
substitutions of the form:

θ1+ θ2+ ... + θn

such that
DB = Qθ1∨ Qθ2∨ ... ∨ Qθn

98 QINZHENG KONG AND GRAHAM CHEN

Consider the answer to a query, Q, applied to a database, DB. Let θ be a ground substitution of the
variables, Ans(def(Q)) be an answer set of definite query def(Q), Ans(pos(Q)) be an answer set of pos query
pos(Q). Let p1∨ p2 represent a disjunctive clause (obtained by rewriting a clause containing incomplete data)
in the database DB and let ∆ represent the remaining clauses in the database, that is, DB = ∆ & (p1 ∨ p2). Let
DB1 denote ∆ & p1 and DB2 denote ∆ & p2. The answer to a query can be given as follows.

Ans(def(Q)) = { θ DB = Q θ} ∪ { θ1 + θ2 DB1 = Qθ1 and DB2 = Qθ2}
Ans(def(Q1 ∧ Q2)) = { θ DB = (Q1 ∧ Q2) θ} ∪ { θ1 + θ2 DB1 = (Q1 ∧ Q2) θ1 and DB2 = (Q1 ∧ Q2)θ2}
Ans(def(Q1 ∨ Q2)) = { θ DB = Q1 θ or DB = Q2θ} ∪ { θ1 + θ2 DB1 = Q1 θ1 and DB2 = Q2θ2}
Ans(pos(Q)) = { θ DB1 = Qθ or DB2 = Qθ}
Ans(pos(Q1 ∧ Q2)) = { θ DB1 = (Q1 ∧ Q2)θ or DB2 = (Q1 ∧ Q2)θ}
Ans(pos(Q1 ∨ Q2)) = { θ DB1 = Q1θ or DB1 = Q2θ or DB2 = Q1θ or DB2 = Q2θ}

If a database contains no incomplete information then it has
Ans(Q) = Ans(def(Q)) = Ans(pos(Q)).

4 THE INDEFINITE CLOSED WORLD ASSUMPTION

The Closed World Assumption [17] provides a simple and natural way of dealing with negation in
relational and definite deductive databases. However, if one permits indefinite information to be stored, as in
the case of indefinite deductive databases, the Closed World Assumption is no longer adequate. For this
reason the Generalised Closed World Assumption [15] and the Extended Generalised Closed World
Assumption [23] have been proposed. However, these approaches have one serious shortcoming which relates
to the interpretation of disjunction. In both cases under certain circumstances the logical operation or (∨) is
interpreted as an exclusive or instead of as an inclusive or. For example, consider a database with the single
clause:

p(a) ∨ p(b)
which states that either p(a) or p(b) or both are true. This database has two minimal models, M1 = {p(a)} and
M2 = {p(b)}. Under the GCWA, since neither p(a) nor p(b) can be proved to be true, neither of them can be
assumed to be false. Hence both p(a) and p(b) are regarded as unknown.

Suppose at some later stage, new information p(a) is introduced into the system. By adding this into the
database the latter now contains the two clauses:

p(a) ∨ p(b)
p(a)

This does not introduce any new information about p(b), and hence the satisfiability of p(b) should not be
affected. However, under the minimal model theory the new database will have only one minimal model, M =
{ p(a)}, and according to the GCWA, p(a) can be proved to be true in the database and p(b) can now be
assumed to be false. This side effect of the GCWA is a serious problem in terms of the correctness of the
conclusion.

For this reason a modified minimal model theory, I-Model theory, is proposed to cater for the case of
indefinite deductive database systems. Under the I-Model theory, the logic operator or is interpreted as an
inclusive or.

4.1 DEFINITION OF I-M ODEL

In order to generate a finite set of answers for user queries, a database is usually assumed to be function
free. The variables occurring in each deductive rule can be instantiated with each value of the Herbrand
universe of the system and the closure of its ground instance clause set is finite if domains are finite. For a
given database, an equivalent database containing only ground clauses can be constructed. Hence in the
following discussions a database system can be assumed to have only ground clauses.

Definition Definite sub-clause: If a ground clause C contains n (n ≥ 1) positive literals then C can be split
into n sub-clauses, each of which contains only one distinct positive literal of C and all the negative literals in
C. Such a sub-clause will be referred to as a definite sub-clause of C.

A constructive definition of an I-Model is as follows:

ON DEDUCTIVE DATABASES WITH INCOMPLETE INFORMATION 99

Definition I-Model: An I-Model of a ground database can be constructed by performing the following
steps:

1. A database DB containing an indefinite clause C (a clause containing more than one positive literal) can
be split into a set of sub-databases each of which contains only one definite sub-clause of C and the rest
of the database. This procedure can be repeated until no indefinite clause remains in any sub-databases.
Each of the sub-databases is a Horn clause system.

2. Each Horn clause system has a unique minimal model. Each distinct minimal model of the sub-
databases constitutes an I-Model of the entire database.

Let DB denote the database system, MMi represent one of the minimal models of DB, and IMi represent an
I-Model of DB.

To demonstrate the definition, consider the following example:
p(a,a) ∨ p(b,a) ← q(a)
p(a,b) ∨ p(b,b) ← q(b)
p(a,a)
q(a)

This database has only one minimal model, MM1 = {p(a,a),q(a)}. According to the I-Model definition
presented above, it can be seen that the database has two I-Models, IM1 = {p(a,a),q(a)} and IM2 =
{ p(a,a),p(b,a),q(a)}. The only minimal model of the database, MM1, is equivalent to IM1.

4.2 I-M ODEL INTERPRETATION

An I-Model interpretation is given as follows:
1. A ground positive literal (an atomic formula) is true if and only if it occurs in every I-Model. It can be

assumed to be false if and only if it does not occur in any I-Model.

2. A ground negative literal (the negation of an atomic formula) is true if and only if its complement (the
positive literal) does not occur in any I-Model. It can be assumed to be false if and only if its
complement occurs in every I-Model.

3. A conjunctive formula is true if every element (literal) of the conjunction is true.

4. A disjunctive formula is true if any element (literal) of the disjunction is true.

This interpretation is referred to as the Indefinite Closed World Assumption (ICWA).
Consider again the last example in which the database has the two I-Models, IM1 = {p(a,a),q(a)} and IM2

= { p(a,a),p(b,a),q(a)}. Under the ICWA, p(a,a) and q(a) can be proved to be true because each occurs in both
IM1 and IM2; p(a,b) and p(b,b) can be assumed to be false since they do not belong to any I-Model; p(b,a)
occurs in one I-Model (IM2) but not the other (IM1) and hence its truth value is unknown. Compare this with
the GCWA approach in which the system has only one minimal model MM 1 = {p(a,a),q(a)}, literals p(a,a)
and q(a) can be proved true while all others, that is, p(a,b), p(b,b) and p(b,a), can be assumed to be false.

4.3 MAIN PROPERTIES OF THE I-M ODEL INTERPRETATION

The I-Model interpretation has the following important properties:
Property 1: An atomic formula is true in a consistent database under the I-Model interpretation if and only

if it is true under the minimal model interpretation.
Property 2: If an atomic formula can be assumed false under the I-Model interpretation then it can also be

assumed false under the minimal model interpretation.
Property 3: If an atomic formula can be proved neither true nor false under the minimal model

interpretation, then it can be proved neither true nor false under the I-Model interpretation.
Let T(IM), F(IM) and U(IM) denote the sets of atomic formulae which can be proved true, false and

unknown respectively under the I-Model interpretation. Similarly, let T(MM), F(MM) and U(MM) denote the
sets of atomic formulae which can be proved true, false and unknown respectively under the minimal model
interpretation. The properties of the I-Model interpretation given above can be summarised as:

T(IM) = T(MM)
F(IM) ⊆ F(MM)

100 QINZHENG KONG AND GRAHAM CHEN

U(IM) ⊇ U(MM)
This indicates that since both interpretations give the same set of atomic formulae which are true in a

consistent database, the I-Model interpretation is therefore consistent with the minimal model interpretation
and it only extends the minimal model interpretation by allowing the representation of inclusive or.

The following property demonstrates the inclusive nature of the I-Model in respect of the operator or.
Property 4: Let DB be a consistent database and p, q be positive literals. If

DB = p ∨ q,
DB = p, and
DB q

and there exists a clause set {S} in DB such that
DB \ { S} = p ∨ q and
DB \ { S} p

in which DB \ {S} is a database excluding the clause set {S} from DB, then one of the I-Models of DB is a
proper superset of a minimal model of DB.

The ICWA can also be applied to a system containing incomplete information of the form p({ a,b}) which
is interpreted as p(a) ∨ p(b) [21,22] since such a system is only a special case of a general indefinite database.

Since the I-Model theory is consistent with the minimal model theory, it can be used to prove that the prove
theory given in the previous section is sound and complete.

Property 5: A substitution θ is a definite answer to an atomic query Q if and only if Qθ is true in every I-
Model of the database system. That is,

θ ∈ Ans(def(Q)) ⇔ ∀i Qθ ∈ IMi

A substitution θ is a definite answer to a complex query Q if and only if Qθ is true in every I-Model of the
database system.

Property 6: A substitution θ is a possible answer to an atomic query Q if and only if there exists an I-
Model such that Qθ belongs to this I-Model. That is,

θ ∈ Ans(pos(Q)) ⇔ ∃i Qθ ∈ IMi

A substitution θ is a possible answer to a complex query Q if there exists an I-Model such that Qθ is true in
the I-Model.

5 IMPLEMENTATION

The proof theory and model theory of the query evaluation system of such a database were presented by
using the method of splitting a non-Horn database into a group of Horn databases. However, splitting an
indefinite database into several definite databases and then evaluating a query on these sub-databases is
inefficient [8].

To counteract this shortcoming, a new data type, the incomplete constants, has been introduced. By using
incomplete constants the problem of handling this special indefiniteness can be confined to that of handling
incompleteness of values. A clause with a restricted form of disjunction can be expressed as a clause
containing only positive literals with incomplete values. For example, the clause

p(a) ∨ p(b) ∨ ¬ q(c)
can be expressed as:

p({ a,b}) ∨ ¬ q(c)
in which p({ a,b}) is the only one positive literal and {a,b} is the incomplete constant. Thus it is possible to
extend the query evaluation mechanism of definite database to cater for databases containing incomplete
information.

Two main components of the proof by refutation procedures are unification and resolvent generation. The
definition of substitution is extended to be able to handle the incomplete constants. Two inference rules are
introduced. One is defined for definite query evaluation. That is, a clause can be deduced if and only if it is a
logic consequence of the database. The other is defined for possible query evaluation. That is, answers
generated from such a system are possibly true in the database.

Two implementation strategies are proposed for such a database system with incomplete information. They
are referred to as the tuple oriented approach and the set oriented approach. The first approach evaluates a

ON DEDUCTIVE DATABASES WITH INCOMPLETE INFORMATION 101

single solution each time and construct the answer set for the query through backtracking. The second
approach evaluates all answers for each subquery and computes the answer set of the query using a modified
join operator.

Both strategies are implemented by using Prolog. Statistics shown that, since the tuple oriented approach
uses the fail and backtracking technique, it causes repeated evaluation, hence is less efficient. The set oriented
approach, although requires lager space, is much more efficient. Apart from the efficiency, the set oriented
approach can handle recursive definition effectively, while the tuple oriented approach may lead to a non-
terminating loop.

6 CONCLUSION

By introducing the incomplete constants, a certain type of indefiniteness can be represented, while the
Horn clause form is still used as the basic format of a general rule in the system. Hence, the inference
mechanism adopted for a Horn clause system can be used in a system employing the incomplete constants.

An I-Model theory is proposed which is used to as a mechanism to derive the negative information and it
can also be used to prove the soundness and the completeness of the inference rules of the system [8].

Two implementation strategies are proposed for such a deductive database system. The set oriented
approach is more effective when handling recursive definitions. The prototype implementations of both
approaches are given in Prolog and discussed fully in [7,8].

REFERENCES

[1] L. Cholvy and R. Demolombe, “Querying a rule base”, Proc. of First International Conference on Expert
Database Systems, South Carolina, pp365-371, April, 1986.

[2] H. Gallaire, “Logic data bases vs deductive data bases”, Proc. of logic programming workshop’83,
pp608-622, (1983).

[3] J. Grant, “Null values in a relational data base”, Information Processing Letters, vol(5), pp156-157,
(1977).

[4] T. Imielinski and W. Lipski, “Incomplete information in relational databases”, Journal of ACM, vol(31),
4, pp761-791, Oct. 1984.

[5] T. Imielinski, “Query processing in deductive databases with incomplete information”, pp268-280, Oct.
1984.

[6] Q. Kong, “On representing incomplete information and null values”, Technical report 89/6, Dept. of
Computer Science, Heriot-Watt University, October 1988.

[7] Q. Kong and M.H. Williams, “Evaluating different strategies for handling incomplete information in a
logic database”, Expanding the horizons Workshop, Imperial College, T. Dodd, R. Owens and S.
Torrance (eds.), Intellect, Oxford, England, (1991).

[8] Q. Kong, “Incomplete information in a deductive database”, PhD Thesis, Dept. of Computer Science,
Heriot-Watt University, Edinburgh, Sept. 1989.

[9] W. Lipski, “Informational systems with incomplete information”, Proc. 3rd Int. Symp. on Automata,
Languages and Programming, S. Michaelson and R. Milner (eds.), Edinburgh University Press,
Edinburgh, pp120-130, (1976).

[10] W. Lipski, “On semantic issues connected with incomplete information databases”, ACM Trans. on
Database Systems, vol(4), 3, pp262-296, Sept. 1979.

[11] J.W. Lloyd, “An introduction to deductive database systems”, Australian Computer Journal, vol(15), 2,
pp52-57, May 1983.

[12] J.W. Lloyd and R.W. Topor, “A basis for deductive database systems”, Journal of Logic Programming,
vol(2), 2, pp93-109, (1985).

[13] J.W. Lloyd and R.W. Topor, “A basis for deductive database systems II”, Journal of Logic Program,
vol(3), 1, pp55-67, (1986).

[14] D.W. Loveland, “Automated theorm proving”, North Holland Publishing Co., New York, (1978).
[15] J. Minker, “On indefinite databases and the closed world assumption”, Lecture Notes in Computer

Science, Springer Verlag, vol(138), (1982).
[16] J. Morrissey, “Imprecise information and uncertainty in information systems”, ACM Trans. on

102 QINZHENG KONG AND GRAHAM CHEN

Information Systems, vol(8), 2, April 1990. pp158-180,
[17] R. Reiter, “On closed world data bases”, Logic and data bases, H. Gallaire and J. Minker, Plenum Press,

New York, pp55-76, (1978).
[18] R. Reiter, “A sound and sometimes complete query evaluation algorithm for relational database with null

values”, Journal of ACM, vol(33), 2, pp349-370, April 1986.
[19] C.B. Schwind, “Embedding deductive capabilities in relational database systems”, International Journal

of Computer and Information Sciences, vol(13), 5, pp327-338, (1984).
[20] M.Y. Vardi, “Querying Logical Databases”, Proc. 4th ACM SIGACT-SIGMOD Symposium on Principles

of Database Systems, pp57-65, March 1985.
[21] M.H. Williams and Q. Kong, “Incomplete information in a deductive database”, Data and Knowledge

Engineering, vol(3), pp197-220, (1988).
[22] M.H. Williams Q. Kong and G. Chen, “Handling incomplete information in a logic database”, UK IT 88

Conference Publication, pp224-227, (1988).
[23] A. Yahya and L.J. Henschen, “Deduction in non-Horn databases”, Journal of Automated Reasoning,

vol(1), pp141-160, (1985).
[24] C. Zaniolo, “Database relations with null values”, Proc. ACM SIGACT-SIGMOD Symposium on

principles of Database Systems, New York, pp27-33, (1982).

